Bounded link prediction in very large networks
Wei Cui,
Cunlai Pu,
Zhongqi Xu,
Shimin Cai,
Jian Yang and
Andrew Michaelson
Physica A: Statistical Mechanics and its Applications, 2016, vol. 457, issue C, 202-214
Abstract:
Evaluating link prediction methods is a hard task in very large complex networks due to the prohibitive computational cost. However, if we consider the lower bound of node pairs’ similarity scores, this task can be greatly optimized. In this paper, we study CN index in the bounded link prediction framework, which is applicable to enormous heterogeneous networks. Specifically, we propose a fast algorithm based on the parallel computing scheme to obtain all node pairs with CN values larger than the lower bound. Furthermore, we propose a general measurement, called self-predictability, to quantify the performance of similarity indices in link prediction, which can also indicate the link predictability of networks with respect to given similarity indices.
Keywords: Link prediction; Complex networks; Parallel computing (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116300395
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:457:y:2016:i:c:p:202-214
DOI: 10.1016/j.physa.2016.03.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().