EconPapers    
Economics at your fingertips  
 

Correlated biased random walk with latency in one and two dimensions: Asserting patterned and unpredictable movement

E. Rodriguez-Horta, E. Estevez-Rams, R. Lora-Serrano and B. Aragón Fernández

Physica A: Statistical Mechanics and its Applications, 2016, vol. 458, issue C, 303-312

Abstract: The correlated biased random walk with latency in one and two dimensions is discussed with regard to the portion of irreducible random movement and structured movement. It is shown how a quantitative analysis can be carried out by using computational mechanics. The stochastic matrix for both dynamics are reported. Latency introduces new states in the finite state machine description of the system in both dimensions, allowing for a full nearest neighbor coordination in the two dimensional case. Complexity analysis is used to characterize the movement, independently of the set of control parameters, making it suitable for the discussion of other random walk models. The complexity map of the system dynamics is reported for the two dimensional case.

Keywords: Random walk; Computational mechanics; SHANNON entropy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116300152
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:458:y:2016:i:c:p:303-312

DOI: 10.1016/j.physa.2016.03.017

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:458:y:2016:i:c:p:303-312