Geometric measure of quantum correlation: The influence of the asymmetry environments
Qinsheng Zhu,
Changchun Ding,
Shaoyi Wu and
Wei Lai
Physica A: Statistical Mechanics and its Applications, 2016, vol. 458, issue C, 67-75
Abstract:
The quantum correlation in open quantum systems is of fundamental and practical importance for quantum information processing and controllable nanometer devices. And the properties of quantum correlation can be influenced by the information flow between systems and environments. In this study, we investigated the geometric measure discord of quantum correlation of a two qubits system, interacting with two independent and intrinsic interacting spin-environments, respectively. Based on the asymmetry environments with comparable parameters, the different properties of the geometric measure of entanglement and quantum discord are displayed and discussed for initial Bell states.
Keywords: Quantum discord; Entanglement; Non-Markovian process (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116301182
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:458:y:2016:i:c:p:67-75
DOI: 10.1016/j.physa.2016.04.004
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().