Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate
Dianli Zhao and
Sanling Yuan
Physica A: Statistical Mechanics and its Applications, 2016, vol. 461, issue C, 419-428
Abstract:
This paper investigates the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate. Existence of a unique global positive solution is proved firstly. Then we obtain the sufficient conditions for permanence in mean and almost sure extinction of the system. Furthermore, the stationary distribution is derived based on the positive equilibrium of the deterministic model, which shows the population is not only persistent but also convergent by time average under some assumptions. Finally, we illustrate our conclusions through two examples.
Keywords: Stochastic predator–prey system; Logistic diffusion terms; Persistence; Stationary distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116302783
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:461:y:2016:i:c:p:419-428
DOI: 10.1016/j.physa.2016.06.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().