EconPapers    
Economics at your fingertips  
 

Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?

G. Whyman, N. Ohtori, E. Shulzinger and Ed. Bormashenko

Physica A: Statistical Mechanics and its Applications, 2016, vol. 461, issue C, 595-601

Abstract: The Benford law states that the frequencies of decimal digits at the first place of numbers corresponding to various kinds of statistical or experimental data are not equal changing from 0.3 for 1 to 0.04 for 9. The corresponding frequencies’ distribution is described by the logarithmic function. As is shown in the present article, the Benford distribution is a particular case of a more general mathematical statement. Namely, if a function describing the dependence between two measurable quantities has a positive second derivative, then the mentioned above frequencies decrease for digits from 1 to 9. The exact Benford distribution is valid for the exponential function only. Explicit expressions for frequencies of leading digits are obtained and specified for the power, logarithmic, and tangent functions as examples. The kinematic experiment was performed to illustrate the above results. Also the tabulated data on thermal conductivities of liquids confirm the proposed formula for frequencies’ distribution.

Keywords: Benford’s law; Generalization; Exemplifications; Functional dependence between quantities (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116303223
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:461:y:2016:i:c:p:595-601

DOI: 10.1016/j.physa.2016.06.054

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:595-601