EconPapers    
Economics at your fingertips  
 

On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points

Mariusz Tarnopolski

Physica A: Statistical Mechanics and its Applications, 2016, vol. 461, issue C, 662-673

Abstract: The long range dependence of the fractional Brownian motion (fBm), fractional Gaussian noise (fGn), and differentiated fGn (DfGn) is described by the Hurst exponent H. Considering the realizations of these three processes as time series, they might be described by their statistical features, such as half of the ratio of the mean square successive difference to the variance, A, and the number of turning points, T. This paper investigates the relationships between A and H, and between T and H. It is found numerically that the formulae A(H)=aebH in case of fBm, and A(H)=a+bHc for fGn and DfGn, describe well the A(H) relationship. When T(H) is considered, no simple formula is found, and it is empirically found that among polynomials, the fourth and second order description applies best. The most relevant finding is that when plotted in the space of (A,T), the three process types form separate branches. Hence, it is examined whether A and T may serve as Hurst exponent indicators. Some real world data (stock market indices, sunspot numbers, chaotic time series) are analyzed for this purpose, and it is found that the H’s estimated using the H(A) relations (expressed as inverted A(H) functions) are consistent with the H’s extracted with the well known wavelet approach. This allows to efficiently estimate the Hurst exponent based on fast and easy to compute A and T, given that the process type: fBm, fGn or DfGn, is correctly classified beforehand. Finally, it is suggested that the A(H) relation for fGn and DfGn might be an exact (shifted) 3/2 power-law.

Keywords: Time series; Hurst exponent; Abbe value; Turning points (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116302722
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:461:y:2016:i:c:p:662-673

DOI: 10.1016/j.physa.2016.06.004

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:662-673