Quantitative analysis of surface tension of liquid nano-film with thickness: Two stage stability mechanism, molecular dynamics and thermodynamics approach
Tiefeng Peng,
Qibin Li,
Jie Chen and
Xuechao Gao
Physica A: Statistical Mechanics and its Applications, 2016, vol. 462, issue C, 1018-1028
Abstract:
The effects of thickness on surface tension of aqueous nano-films under the same lateral size were studied by molecular dynamics (MD) simulations. The surface tension was found to decrease with decreasing thickness when film thickness is below 1.5 nm. Between 4 and 1.5 nm, the trend is for the surface tension to decrease but this is not as significant as between 1.5 and 1.2 nm. For the surface tension of salt nano-films, with low temperatures resulting in monotonous decreasing with thickness, while high temperature (e.g. 479 K) exhibited a first increase then decrease for surface tension with thickness. Filippini et al. (2014) suggested that surface tension is constant with the thickness as long as the sheet remains in one piece, also the decrease observed and as proposed by Werth et al. (2013) is not due to a confinement effect on Lennard-Jones systems. However, in this study for aqueous nano-films, a two stage mechanism was proposed to interpret this effect, for which the stability was classified according to thickness range and validated by disjoining pressure. The results are important in describing the role of surface tension in determining the behaviour of disjoining pressure.
Keywords: Molecular dynamics; Surface tension; Thin film; Finite size effect (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711630396X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:462:y:2016:i:c:p:1018-1028
DOI: 10.1016/j.physa.2016.06.121
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().