Understanding the determinants of volatility clustering in terms of stationary Markovian processes
S. Miccichè
Physica A: Statistical Mechanics and its Applications, 2016, vol. 462, issue C, 186-197
Abstract:
Volatility is a key variable in the modeling of financial markets. The most striking feature of volatility is that it is a long-range correlated stochastic variable, i.e. its autocorrelation function decays like a power-law τ−β for large time lags. In the present work we investigate the determinants of such feature, starting from the empirical observation that the exponent β of a certain stock’s volatility is a linear function of the average correlation of such stock’s volatility with all other volatilities.
Keywords: Volatility; Econophysics; Long-range correlation; Stochastic processes; First passage time (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116303491
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:462:y:2016:i:c:p:186-197
DOI: 10.1016/j.physa.2016.06.081
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().