Etiology of phenotype switching strategy in time varying stochastic environment
Denis Horvath and
Branislav Brutovsky
Physica A: Statistical Mechanics and its Applications, 2016, vol. 462, issue C, 455-468
Abstract:
In the paper, we present the two-state discrete-time Markovian model to study the impact of the two alternative switching strategies on the fitness of the population evolving in time varying environment. The first strategy, referred as the ‘responsive switching’, enables the cell to make transition into the state conferring to it higher fitness in the instant environment. If the alternative strategy, termed ‘random switching’ is applied, the cell undergoes transition into the new state not regarding the instant environment. Each strategy comes with the respective cost for its physical realization. Within the framework of evolutionary model, mutations occur as random events which change parameters of the probabilistic models corresponding to the respective switching strategies. Most of the general trends of population averages can be easily understood at the intuitive level, with a few exceptions related to the cases when too low mutation noise hampers population to follow rapid environmental changes. On the other hand, the more detailed study of the parameter distributions reveals much more complex structure than expected. The simulation results may help to understand, at the conceptual level, relation between the population heterogeneity and its environment that could find important implications in various areas, such as cancer therapy or development of risk diversifying strategies.
Keywords: Phenotype switching; Stochastic environments; Probabilistic simulation; Evolutionary model; Heterogeneity measures; Cancer therapeutic strategy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116302667
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:462:y:2016:i:c:p:455-468
DOI: 10.1016/j.physa.2016.05.066
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().