Phase transitions in tumor growth: III vascular and metastasis behavior
J.A. Llanos-Pérez,
J.A. Betancourt-Mar,
G. Cocho,
R. Mansilla and
José Manuel Nieto-Villar
Physica A: Statistical Mechanics and its Applications, 2016, vol. 462, issue C, 560-568
Abstract:
We propose a mechanism for avascular, vascular and metastasis tumor growth based on a chemical network model. Vascular growth and metastasis, appear as a hard phase transition type, as “first order”, through a supercritical Andronov–Hopf bifurcation, emergence of limit cycle and then through a cascade of bifurcations type saddle-foci Shilnikov’s bifurcation. Finally, the thermodynamics framework developed shows that the entropy production rate, as a Lyapunov function, indicates the directional character and stability of the dynamical behavior of tumor growth according to this model.
Keywords: Phase transition; Vascular and metastasis tumor growth; Entropy production; Chaos and complexity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116303545
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:462:y:2016:i:c:p:560-568
DOI: 10.1016/j.physa.2016.06.086
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().