Mobility of nanometer-size solutes in water driven by electric field
Mohammadhasan Dinpajooh and
Dmitry V. Matyushov
Physica A: Statistical Mechanics and its Applications, 2016, vol. 463, issue C, 366-375
Abstract:
We investigate the mobility of nanometer-size solutes in water in a uniform external electric field. General arguments are presented to show that a closed surface cutting a volume from a polar liquid will carry an effective non-zero surface charge density when preferential orientation of dipoles exists in the interface. This effective charge will experience a non-vanishing drag in an external electric field even in the absence of free charge carriers. Numerical simulations of model solutes are used to estimate the magnitude of the surface charge density. We find it to be comparable to the values typically reported from the mobility measurements. Hydrated ions can potentially carry a significant excess of the effective charge due to over-polarization of the interface. As a result, the electrokinetic charge can significantly deviate from the physical charge of free charge carriers. We propose to test the model by manipulating the polarizability of hydrated semiconductor nanoparticles with light. The inversion of the mobility direction can be achieved by photoexcitation, which increases the nanoparticle polarizability and leads to an inversion of the dipolar orientations of water molecules in the interface.
Keywords: Ion mobility; Electrokinetic effect; Polarization of interface; Electrokinetic charge (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711630485X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:463:y:2016:i:c:p:366-375
DOI: 10.1016/j.physa.2016.07.054
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().