The role of coupling-frequency weighting exponent on synchronization of a power network
Li-xin Yang and
Jun Jiang
Physica A: Statistical Mechanics and its Applications, 2016, vol. 464, issue C, 115-122
Abstract:
Second-order Kuramoto-like oscillators with dissimilar natural frequencies are used as a coarse-scale model for an electrical power network that contains generators and consumers. This paper proposes a new power network model with coupling-frequency weighting exponent. Furthermore, the influence of the weighting exponent on synchronization of a power network is investigated through numerical simulations. It is observed that the synchronizability is significantly influenced by the coupling-frequency weighting coefficient with different magnitude categories. Furthermore, the synchronization cost caused by phase differences of power plants on the synchronization of the proposed power network model is studied. Numerical simulation shows that the synchronization cost will get larger with the coupling-frequency weighting exponent increasing further.
Keywords: Power network; Synchronizability; Weighting exponent; Synchronization cost (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116304575
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:464:y:2016:i:c:p:115-122
DOI: 10.1016/j.physa.2016.07.026
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().