Impact of variable body size on pedestrian dynamics by heuristics-based model
Ning Guo,
Mao-Bin Hu and
Rui Jiang
Physica A: Statistical Mechanics and its Applications, 2017, vol. 465, issue C, 109-114
Abstract:
In the real world, pedestrians can arch the shoulders or rotate their bodies actively to across the narrow space. The method is helpful to reduce the effective size of the body. In this paper, the impact of variable body size on the direction choice has been investigated by an improved heuristic-based model. In the model, it is assumed that the cost of adjusting body size is a factor in the process to evaluate the optimal direction. In a typical simulation scenario, the pedestrian reluctant to adjust body size will pass by the blocks. On the contrary, the pedestrian caring little about body size will traverse through the exit. There is a direction-choice change behavior between bypass and traverse considering block width and the initial location of the pedestrian.
Keywords: Pedestrian dynamics; Heuristics-based model; Variable body size; Direction choice (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116305179
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:465:y:2017:i:c:p:109-114
DOI: 10.1016/j.physa.2016.08.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().