EconPapers    
Economics at your fingertips  
 

Application of artificial neural network with extreme learning machine for economic growth estimation

Ljubiša Milačić, Srđan Jović, Tanja Vujović and Jovica Miljković

Physica A: Statistical Mechanics and its Applications, 2017, vol. 465, issue C, 285-288

Abstract: The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

Keywords: GDP; Forecasting; Extreme learning machine; Economic (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711630557X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:465:y:2017:i:c:p:285-288

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-11-10
Handle: RePEc:eee:phsmap:v:465:y:2017:i:c:p:285-288