EconPapers    
Economics at your fingertips  
 

Lattice Boltzmann simulations of convection heat transfer in porous media

Qing Liu and Ya-Ling He

Physica A: Statistical Mechanics and its Applications, 2017, vol. 465, issue C, 742-753

Abstract: A non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed to study convection heat transfer in porous media at the representative elementary volume scale based on the generalized non-Darcy model. In the method, two different LB models are constructed: one is constructed in the framework of the double-distribution-function approach, and the other is constructed in the framework of the hybrid approach. In particular, the transformation matrices used in the MRT-LB models are non-orthogonal matrices. The present method is applied to study mixed convection flow in a porous channel and natural convection flow in a porous cavity. It is found that the numerical results are in good agreement with the analytical solutions and/or other results reported in previous studies. Furthermore, the non-orthogonal MRT-LB method shows better numerical stability in comparison with the BGK-LB method.

Keywords: Lattice Boltzmann method; Non-orthogonal MRT model; Convection heat transfer; Porous media; Generalized non-Darcy model; Hybrid approach (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711630526X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:465:y:2017:i:c:p:742-753

DOI: 10.1016/j.physa.2016.08.010

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:465:y:2017:i:c:p:742-753