How long will the traffic flow time series keep efficacious to forecast the future?
PengCheng Yuan and
XuXun Lin
Physica A: Statistical Mechanics and its Applications, 2017, vol. 467, issue C, 419-431
Abstract:
This paper investigate how long will the historical traffic flow time series keep efficacious to forecast the future. In this frame, we collect the traffic flow time series data with different granularity at first. Then, using the modified rescaled range analysis method, we analyze the long memory property of the traffic flow time series by computing the Hurst exponent. We calculate the long-term memory cycle and test its significance. We also compare it with the maximum Lyapunov exponent method result. Our results show that both of the freeway traffic flow time series and the ground way traffic flow time series demonstrate positively correlated trend (have long-term memory property), both of their memory cycle are about 30 h. We think this study is useful for the short-term or long-term traffic flow prediction and management.
Keywords: Traffic flow time series; Long memory; Modified rescaled range analysis; Maximum Lyapunov exponent (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116307075
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:467:y:2017:i:c:p:419-431
DOI: 10.1016/j.physa.2016.10.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().