Gambler’s ruin problem on Erdős–Rényi graphs
Zoltán Néda,
Larissa Davidova,
Szeréna Újvári and
Gabriel Istrate
Physica A: Statistical Mechanics and its Applications, 2017, vol. 468, issue C, 147-157
Abstract:
A multiagent ruin-game is studied on Erdős–Rényi type graphs. Initially the players have the same wealth. At each time step a monopolist game is played on all active links (links that connect nodes with nonzero wealth). In such a game each player puts a unit wealth in the pot and the pot is won with equal probability by one of the players. The game ends when there are no connected players such that both of them have non-zero wealth. In order to characterize the final state for dense graphs a compact formula is given for the expected number of the remaining players with non-zero wealth and the wealth distribution among these players. Theoretical predictions are given for the expected duration of the ruin game. The dynamics of the number of active players is also investigated. Validity of the theoretical predictions is investigated by Monte Carlo experiments.
Keywords: Ruin game; Random graphs; Wealth distribution models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116307439
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:468:y:2017:i:c:p:147-157
DOI: 10.1016/j.physa.2016.10.056
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().