EconPapers    
Economics at your fingertips  
 

Effect of cyto/chemokine degradation in effective intercellular communication distances

V.K. Gupta

Physica A: Statistical Mechanics and its Applications, 2017, vol. 468, issue C, 244-251

Abstract: Many complex biological processes such as cell differentiation, cell proliferation, and cell motility are governed by cell signaling. This mode of intercellular communication is of paramount importance for tissue function and ultimately for entire organism. In intercellular communication cells secrete signaling molecules such as cyto/chemokines which diffuse through the surrounding medium and eventually bind to receptors on other cells whereby the signal transduction is completed. An accurate estimation of the effective communication distances and the time scale on which signaling takes place are important for the interpretation of cell and organ physiology and ultimately in the effective and efficient chemotactically driven tissue engineering. The present study uses a solitary cell model incorporating degradation of secreted molecules to estimate the effective communication distances and the time scale on which signaling takes place. We demonstrate through our model that in presence of degradation the effective communication distances are significantly reduced.

Keywords: Cell motility; Cell signaling; Intercellular communication; Cyto/chemokine degradation; Communication distance (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116307634
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:468:y:2017:i:c:p:244-251

DOI: 10.1016/j.physa.2016.10.098

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:244-251