EconPapers    
Economics at your fingertips  
 

Identification of influential nodes in complex networks: Method from spreading probability viewpoint

Zhong-Kui Bao, Chuang Ma, Bing-Bing Xiang and Hai-Feng Zhang

Physica A: Statistical Mechanics and its Applications, 2017, vol. 468, issue C, 391-397

Abstract: The problem of identifying influential nodes in complex networks has attracted much attention owing to its wide applications, including how to maximize the information diffusion, boost product promotion in a viral marketing campaign, prevent a large scale epidemic and so on. From spreading viewpoint, the probability of one node propagating its information to one other node is closely related to the shortest distance between them, the number of shortest paths and the transmission rate. However, it is difficult to obtain the values of transmission rates for different cases, to overcome such a difficulty, we use the reciprocal of average degree to approximate the transmission rate. Then a semi-local centrality index is proposed to incorporate the shortest distance, the number of shortest paths and the reciprocal of average degree simultaneously. By implementing simulations in real networks as well as synthetic networks, we verify that our proposed centrality can outperform well-known centralities, such as degree centrality, betweenness centrality, closeness centrality, k-shell centrality, and nonbacktracking centrality. In particular, our findings indicate that the performance of our method is the most significant when the transmission rate nears to the epidemic threshold, which is the most meaningful region for the identification of influential nodes.

Keywords: Complex networks; Influential spreader; Reciprocal of average degree; Epidemic threshold (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116307907
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:468:y:2017:i:c:p:391-397

DOI: 10.1016/j.physa.2016.10.086

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:391-397