Symmetry of bilinear master equations for a quantum oscillator
B.A. Tay
Physica A: Statistical Mechanics and its Applications, 2017, vol. 468, issue C, 578-589
Abstract:
We study the most general continuous transformation on the generators of bilinear master equations of a quantum oscillator. We find that transformation operators that preserve the hermiticity of density operators and conserve the probability of reduced dynamics should be adjoint-symmetric, and they are not limited to the pure product of unitary operators in the bra and ket space but could be a mixture of them. We need to include the more general transformation operators to explore the full symmetry of generic reduced dynamics. We discuss how the operators are related to those considered in previous works, and illustrate how they leave the reduced dynamics form invariant, or map one into the other. The positive semidefinite requirement on the density operator can be imposed to give a valid range of transformation parameters.
Keywords: Symmetry; Liouville space; Reduced dynamics; Open quantum systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116307543
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:468:y:2017:i:c:p:578-589
DOI: 10.1016/j.physa.2016.10.067
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().