Leader selection problem for stochastically forced consensus networks based on matrix differentiation
Leitao Gao,
Guangshe Zhao,
Guoqi Li and
Zhaoxu Yang
Physica A: Statistical Mechanics and its Applications, 2017, vol. 469, issue C, 799-812
Abstract:
The leader selection problem refers to determining a predefined number of agents as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. The original leader selection problem is formulated as a non-convex optimization problem where matrix variables are involved. By relaxing the constraints, a convex optimization model can be obtained. By introducing a chain rule of matrix differentiation, we can obtain the gradient of the cost function which consists matrix variables. We develop a “revisited projected gradient method” (RPGM) and a “probabilistic projected gradient method” (PPGM) to solve the two formulated convex and non-convex optimization problems, respectively. The convergence property of both methods is established. For convex optimization model, the global optimal solution can be achieved by RPGM, while for the original non-convex optimization model, a suboptimal solution is achieved by PPGM. Simulation results ranging from the synthetic to real-life networks are provided to show the effectiveness of RPGM and PPGM. This works will deepen the understanding of leader selection problems and enable applications in various real-life distributed control problems.
Keywords: Leader selection; Consensus; Stochastically forced networks; Revisited projected gradient method (RPGM); Probabilistic projected gradient method (PPGM) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116309347
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:469:y:2017:i:c:p:799-812
DOI: 10.1016/j.physa.2016.11.111
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().