Emergence of heavy-tailed skew distributions from the heat equation
ByoungSeon Choi,
Hyuk Kang and
M.Y. Choi
Physica A: Statistical Mechanics and its Applications, 2017, vol. 470, issue C, 88-93
Abstract:
It is well known that the symmetric Gaussian function, called the fundamental solution, serves as the Green’s function of the heat equation. In reality, on the other hand, distribution functions obtained empirically often differ from the Gaussian function. This study presents a new solution of the heat equation, satisfying localized initial conditions like the Gaussian fundamental solution. The new solution corresponds to a hetero-mixture distribution, which generalizes the Gaussian distribution function to a skewed and heavy-tailed distribution, and thus provides a candidate for the empirical distribution functions.
Keywords: Heat equation; Skew distribution; Heavy-tailed distribution; Hetero-mixture distribution (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116308998
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:470:y:2017:i:c:p:88-93
DOI: 10.1016/j.physa.2016.11.095
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().