Controlling of stochastic resonance and noise enhanced stability induced by harmonic noises in a bistable system
Chao-Jie Wang,
Fei Long,
Pei Zhang and
Lin-Ru Nie
Physica A: Statistical Mechanics and its Applications, 2017, vol. 471, issue C, 288-294
Abstract:
Stochastic resonance (SR) and noise enhanced stability (NES) in a bistable system driven by an additive harmonic noise and a multiplicative harmonic noise is investigated. Through numerical simulation, we obtained the power spectrum by the Fourier transformation on time series. The results indicate that (i) for certain values of the parameters of additive harmonic noise Γ, Ω and the noise intensity D, the SR phenomenon occurs. It means we can control the SR phenomenon by modulating the parameters of harmonic noise; (ii) the NES phenomenon occurs at certain values of the parameters of multiplicative harmonic noise Γ, Ω and the multiplicative noise intensity Q. Most important, the NES phenomenon can also be controlled by modulating the parameters of harmonic noise.
Keywords: Harmonic noise; Stochastic resonance; Bistable system (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116309086
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:471:y:2017:i:c:p:288-294
DOI: 10.1016/j.physa.2016.11.103
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().