Negative heat capacity in a left-handed system
L. Palma-Chilla and
J.C. Flores
Physica A: Statistical Mechanics and its Applications, 2017, vol. 471, issue C, 396-401
Abstract:
This paper models a left-handed system by finite inductively interacting elements. To separate the internal energy a generic double spectral parametrization is proposed. The microcanonical formalism analytically allows to derive the entropy, temperature and heat capacity in each energy set. Particularly, the heat capacity was found to be negative at high energies. These analytical findings are supported through numerical results. Interestingly, numerically the heat capacity of the system seems to decline when increasing internal energy in both sets.
Keywords: Left-handed metamaterials; Heat capacity; Thermodynamics; Quantum modeling; Excitations; Waveguides (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116310019
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:471:y:2017:i:c:p:396-401
DOI: 10.1016/j.physa.2016.12.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().