Predicting links based on knowledge dissemination in complex network
Wen Zhou and
Yifan Jia
Physica A: Statistical Mechanics and its Applications, 2017, vol. 471, issue C, 561-568
Abstract:
Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method–knowledge dissemination based link prediction (KDLP)–is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.
Keywords: Complex network; Network evolving mechanism; Link prediction; H-index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116310421
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:471:y:2017:i:c:p:561-568
DOI: 10.1016/j.physa.2016.12.067
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().