Visibility to discern local from nonlocal dynamic processes
A. Brú,
D. Gómez-Castro and
J.C. Nuño
Physica A: Statistical Mechanics and its Applications, 2017, vol. 471, issue C, 718-723
Abstract:
We compare using visibility the usual Kardar–Parisi–Zhang (KPZ) universality class and a fractional Edward–Wilkinson (EWf) equation with correlated noise, which share the same kinetic roughening exponents. The KPZ universality class is described by an equation in terms of the usual derivatives, uncorrelated noise and therefore is intrinsically local. The second model includes fractional powers of the Laplace operator and correlated noise, both of which are nonlocal. From their scaling properties, one could be tempted to conclude that both dynamics belong to the same universality class, specifically, to the KPZ universality class. However, this is a wrong conclusion that calls the attention against the indiscriminate application of this approach in real systems without taking into consideration basic physical assumptions (e.g. locality). These examples reveal the necessity of finding new algorithms for detecting characteristics that remain unnoticed to classical scaling analysis, where only the two first moments of the interface distribution (mean and variance) are used to classify the dynamics. We show that visibility and, in particular, the kinetic roughening exponents of the visibility interface, are able to distinguish between these two dynamics which are confused by standard techniques.
Keywords: Rough interfases; Fractional PDEs; Visibility; Scaling analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116310585
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:471:y:2017:i:c:p:718-723
DOI: 10.1016/j.physa.2016.12.078
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().