EconPapers    
Economics at your fingertips  
 

Stepping community detection algorithm based on label propagation and similarity

Wei Li, Ce Huang, Miao Wang and Xi Chen

Physica A: Statistical Mechanics and its Applications, 2017, vol. 472, issue C, 145-155

Abstract: Community or module structure is one of the most common features in complex networks. The label propagation algorithm (LPA) is a near linear time algorithm that is able to detect community structure effectively. Nevertheless, when labeling a node, the LPA adopts the label belonging to the majority of its neighbors, which means that it treats all neighbors equally in spite of their different effects on the node. Another disadvantage of LPA is that the results it generates are not unique. In this paper, we propose a modified LPA called Stepping LPA-S, in which labels are propagated by similarity. Furthermore, our algorithm divides networks using a stepping framework, and uses an evaluation function proposed in this paper to select the final unique partition. We tested this algorithm on several artificial and real-world networks. The results show that Stepping LPA-S can obtain accurate and meaningful community structure without priori information.

Keywords: Community detection; Label propagation; Similarity; Stepping algorithm; Evaluation function (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117300225
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:472:y:2017:i:c:p:145-155

DOI: 10.1016/j.physa.2017.01.030

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:145-155