EconPapers    
Economics at your fingertips  
 

Understanding the topological characteristics and flow complexity of urban traffic congestion

Tzai-Hung Wen, Wei-Chien-Benny Chin and Pei-Chun Lai

Physica A: Statistical Mechanics and its Applications, 2017, vol. 473, issue C, 166-177

Abstract: For a growing number of developing cities, the capacities of streets cannot meet the rapidly growing demand of cars, causing traffic congestion. Understanding the spatial–temporal process of traffic flow and detecting traffic congestion are important issues associated with developing sustainable urban policies to resolve congestion. Therefore, the objective of this study is to propose a flow-based ranking algorithm for investigating traffic demands in terms of the attractiveness of street segments and flow complexity of the street network based on turning probability. Our results show that, by analyzing the topological characteristics of streets and volume data for a small fraction of street segments in Taipei City, the most congested segments of the city were identified successfully. The identified congested segments are significantly close to the potential congestion zones, including the officially announced most congested streets, the segments with slow moving speeds at rush hours, and the areas near significant landmarks. The identified congested segments also captured congestion-prone areas concentrated in the business districts and industrial areas of the city. Identifying the topological characteristics and flow complexity of traffic congestion provides network topological insights for sustainable urban planning, and these characteristics can be used to further understand congestion propagation.

Keywords: Traffic congestion; PageRank algorithm; Network topology; Mobility (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711730033X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:473:y:2017:i:c:p:166-177

DOI: 10.1016/j.physa.2017.01.035

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:166-177