EconPapers    
Economics at your fingertips  
 

Empirical comparison of network sampling: How to choose the most appropriate method?

Neli Blagus, Lovro Šubelj and Marko Bajec

Physica A: Statistical Mechanics and its Applications, 2017, vol. 477, issue C, 136-148

Abstract: In the past few years, the storage and the analysis of large-scale and fast evolving networks presents a great challenge. Therefore, a number of different techniques have been proposed for sampling large networks. Studies on network sampling primarily analyze the changes of network properties under the sampling. In general, network exploration techniques approximate the original networks more accurate than random node and link selection. Yet, link selection with additional subgraph induction step outperforms most other techniques. In this paper, we apply subgraph induction also to random walk and forest-fire sampling and evaluate the effects of subgraph induction on the sampling accuracy. We analyze different real-world networks and the changes of their properties introduced by sampling. The results reveal that the techniques with subgraph induction improve the performance of techniques without induction and create denser sample networks with larger average degree. Furthermore, the accuracy of sampling decrease consistently across various sampling techniques, when the sampled networks are smaller. Based on the results of the comparison, we introduce the scheme for selecting the most appropriate technique for network sampling. Overall, the breadth-first exploration sampling proves as the best performing technique.

Keywords: Complex networks; Network sampling; Comparison of sampling techniques; Subgraph induction; Sampling accuracy; Sampling selection scheme (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117301681
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:477:y:2017:i:c:p:136-148

DOI: 10.1016/j.physa.2017.02.048

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:136-148