Dual mean field search for large scale linear and quadratic knapsack problems
Juan Banda,
Jonás Velasco and
Arturo Berrones
Physica A: Statistical Mechanics and its Applications, 2017, vol. 478, issue C, 158-167
Abstract:
An implementation of mean field annealing to deal with large scale linear and non linear binary optimization problems is given. Mean field annealing is based on the analogy between combinatorial optimization and interacting physical systems at thermal equilibrium. Specifically, a mean field approximation of the Boltzmann distribution given by a Lagrangian that encompass the objective function and the constraints is calculated. The original discrete task is in this way transformed into a continuous variational problem. In our version of mean field annealing, no temperature parameter is used, but a good starting point in the dual space is given by a “thermodynamic limit” argument. The method is tested in linear and quadratic knapsack problems with sizes that are considerably larger than those used in previous studies of mean field annealing. Dual mean field annealing is capable to find high quality solutions in running times that are orders of magnitude shorter than state of the art algorithms. Moreover, as may be expected for a mean field theory, the solutions tend to be more accurate as the number of variables grow.
Keywords: Mean field annealing; Combinatorial optimization; Physics-inspired heuristics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117302169
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:478:y:2017:i:c:p:158-167
DOI: 10.1016/j.physa.2017.02.052
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().