Extended resource allocation index for link prediction of complex network
Shuxin Liu,
Xinsheng Ji,
Caixia Liu and
Yi Bai
Physica A: Statistical Mechanics and its Applications, 2017, vol. 479, issue C, 174-183
Abstract:
Recently, a number of similarity-based methods have been proposed to predict the missing links in complex network. Among these indices, the resource allocation index performs very well with lower time complexity. However, it ignores potential resources transferred by local paths between two endpoints. Motivated by the resource exchange taking places between endpoints, an extended resource allocation index is proposed. Empirical study on twelve real networks and three synthetic dynamic networks has shown that the index we proposed can achieve a good performance, compared with eight mainstream baselines.
Keywords: Link prediction; Complex network; Resource exchange; Similarity index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117301991
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:479:y:2017:i:c:p:174-183
DOI: 10.1016/j.physa.2017.02.078
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().