EconPapers    
Economics at your fingertips  
 

Extended resource allocation index for link prediction of complex network

Shuxin Liu, Xinsheng Ji, Caixia Liu and Yi Bai

Physica A: Statistical Mechanics and its Applications, 2017, vol. 479, issue C, 174-183

Abstract: Recently, a number of similarity-based methods have been proposed to predict the missing links in complex network. Among these indices, the resource allocation index performs very well with lower time complexity. However, it ignores potential resources transferred by local paths between two endpoints. Motivated by the resource exchange taking places between endpoints, an extended resource allocation index is proposed. Empirical study on twelve real networks and three synthetic dynamic networks has shown that the index we proposed can achieve a good performance, compared with eight mainstream baselines.

Keywords: Link prediction; Complex network; Resource exchange; Similarity index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117301991
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:479:y:2017:i:c:p:174-183

DOI: 10.1016/j.physa.2017.02.078

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:174-183