Extension of the analytical kinetics of micellar relaxation: Improving a relation between the Becker–Döring difference equations and their Fokker–Planck approximation
I.A. Babintsev,
L.Ts. Adzhemyan and
A.K. Shchekin
Physica A: Statistical Mechanics and its Applications, 2017, vol. 479, issue C, 551-562
Abstract:
Relaxation of micellar systems can be described with the help of the Becker–Döring kinetic difference equations for aggregate concentrations. Passing in these equations to continual description, when the aggregation number is considered as continuous variable and the concentration difference is replaced by the concentration differential, allows one to find analytically the eigenvalues (to whom the inverse times of micellar relaxation are related) and eigenfunctions (or the modes of fast relaxation) of the linearized differential operator of the kinetic equation corresponding to the Fokker–Planck approximation. At this the spectrum of eigenvalues appears to be degenerated at some surfactant concentrations. However, as has been recently found by us, there is no such a degeneracy at numerical determination of the eigenvalues of the matrix of coefficients for the linearized difference Becker–Döring equations. It is shown in this work in the frameworks of the perturbation theory, that taking into account the corrections to the kinetic equation produced by second derivatives at transition from differences to differentials and by deviation of the aggregation work from a parabolic form in the vicinity of the work minimum, lifts the degeneracy of eigenvalues and improves markedly the agreement of concentration-dependent fast relaxation time with the results of the numerical solution of the linearized Becker–Döring difference equations.
Keywords: Micelles; Kinetic equation; Fast relaxation; Perturbation theory (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117302807
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:479:y:2017:i:c:p:551-562
DOI: 10.1016/j.physa.2017.03.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().