Controllable subspace of edge dynamics in complex networks
Shao-Peng Pang and
Fei Hao
Physica A: Statistical Mechanics and its Applications, 2017, vol. 481, issue C, 209-223
Abstract:
For the edge dynamics in some real networks, it may be neither feasible nor necessary to be fully controlled. An accompanying issue is that, when the external signal is applied to a few nodes or even a single node, how many edges can be controlled? In this paper, for the edge dynamics system, we propose a theoretical framework to determine the controllable subspace and calculate its generic dimension based on the integer linear programming. This framework allows us not only to analyze the control centrality, i.e., the ability of a node to control, but also to uncover the controllable centrality, i.e., the propensity of an edge to be controllable. The simulation results and analytic calculation show that dense and homogeneous networks tend to have larger control centrality of nodes and controllable centrality of edges, but the negatively correlated in- and out-degrees of nodes or edges can reduce the two centrality. The positive correlation between the control centrality of node and its out-degree leads to that the distribution of control centrality, instead of that of controllable centrality, is encoded by the out-degree distribution of networks. Meanwhile, the positive correlation indicates that the nodes with high out-degree tend to play more important roles in control.
Keywords: Complex networks; Edge dynamics; Controllable subspace; Degree distribution (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117303370
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:481:y:2017:i:c:p:209-223
DOI: 10.1016/j.physa.2017.04.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().