An evidential link prediction method and link predictability based on Shannon entropy
Likang Yin,
Haoyang Zheng,
Tian Bian and
Yong Deng
Physica A: Statistical Mechanics and its Applications, 2017, vol. 482, issue C, 699-712
Abstract:
Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster–Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.
Keywords: Complex networks; Link prediction; Dempster–Shafer theory; Belief function; Predictability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117304302
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:482:y:2017:i:c:p:699-712
DOI: 10.1016/j.physa.2017.04.106
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().