Economics at your fingertips  

Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

Yali Zhang and Jun Wang

Physica A: Statistical Mechanics and its Applications, 2017, vol. 482, issue C, 741-756

Abstract: In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model — the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

Keywords: Nonlinear complex behavior; Statistical physics systems; Financial price model; Stochastic multitype range-intensity contact process; Random visibility graph; Lempel-Ziv complexity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-12-08
Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:741-756