Investigation of probability theory on Ising models with different four-spin interactions
Yuming Yang,
Baohua Teng,
Hongchun Yang and
Haijuan Cui
Physica A: Statistical Mechanics and its Applications, 2017, vol. 483, issue C, 243-249
Abstract:
Based on probability theory, two types of three-dimensional Ising models with different four-spin interactions are studied. Firstly the partition function of the system is calculated by considering the local correlation of spins in a given configuration, and then the properties of the phase transition are quantitatively discussed with series expansion technique and numerical method. Meanwhile the rounding errors in this calculation is analyzed so that the possibly source of the error in the calculation based on the mean field theory is pointed out.
Keywords: Ising model; Probability; Error analysis; Simulation; Upper critical temperature (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117304867
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:483:y:2017:i:c:p:243-249
DOI: 10.1016/j.physa.2017.04.176
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().