EconPapers    
Economics at your fingertips  
 

Synchronization-based parameter estimation of fractional-order neural networks

Yajuan Gu, Yongguang Yu and Hu Wang

Physica A: Statistical Mechanics and its Applications, 2017, vol. 483, issue C, 351-361

Abstract: This paper focuses on the parameter estimation problem of fractional-order neural network. By combining the adaptive control and parameter update law, we generalize the synchronization-based identification method that has been reported in several literatures on identifying unknown parameters of integer-order systems. With this method, parameter identification and synchronization can be achieved simultaneously. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

Keywords: Parameter estimation; Synchronization; Fractional-order; Neural networks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117304405
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:483:y:2017:i:c:p:351-361

DOI: 10.1016/j.physa.2017.04.124

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:351-361