Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs
Jianguo Li,
Yong Tang and
Jiemin Chen
Physica A: Statistical Mechanics and its Applications, 2017, vol. 483, issue C, 398-411
Abstract:
Recommender systems (RSs) have been a widely exploited approach to solving the information overload problem. However, the performance is still limited due to the extreme sparsity of the rating data. With the popularity of Web 2.0, the social tagging system provides more external information to improve recommendation accuracy. Although some existing approaches combine the matrix factorization models with the tag co-occurrence and context of tags, they neglect the issue of tag sparsity that would also result in inaccurate recommendations. Consequently, in this paper, we propose a novel hybrid collaborative filtering model named WUDiff_RMF, which improves regularized matrix factorization (RMF) model by integrating Weighted User-Diffusion-based CF algorithm(WUDiff) that obtains the information of similar users from the weighted tripartite user–item–tag graph. This model aims to capture the degree correlation of the user–item–tag tripartite network to enhance the performance of recommendation. Experiments conducted on four real-world datasets demonstrate that our approach significantly performs better than already widely used methods in the accuracy of recommendation. Moreover, results show that WUDiff_RMF can alleviate the data sparsity, especially in the circumstance that users have made few ratings and few tags.
Keywords: Regularized matrix factorization; Collaborative filtering; Tag; Diffusion; Tripartite graphs (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117304107
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:483:y:2017:i:c:p:398-411
DOI: 10.1016/j.physa.2017.04.121
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().