Diffusive Boltzmann equation, its fluid dynamics, Couette flow and Knudsen layers
Rafail V. Abramov
Physica A: Statistical Mechanics and its Applications, 2017, vol. 484, issue C, 532-557
Abstract:
In the current work we construct a multimolecule random process which leads to the Boltzmann equation in the appropriate limit, and which is different from the deterministic real gas dynamics process. We approximate the statistical difference between the two processes via a suitable diffusion process, which is obtained in the multiscale homogenization limit. The resulting Boltzmann equation acquires a new spatially diffusive term, which subsequently manifests in the corresponding fluid dynamics equations. We test the Navier–Stokes and Grad closures of the diffusive fluid dynamics equations in the numerical experiments with the Couette flow for argon and nitrogen, and compare the results with the corresponding Direct Simulation Monte Carlo (DSMC) computations. We discover that the full-fledged Knudsen velocity boundary layers develop with all tested closures when the viscosity and diffusivity are appropriately scaled in the vicinity of the walls. Additionally, we find that the component of the heat flux parallel to the direction of the flow is comparable in magnitude to its transversal component near the walls, and that the nonequilibrium Grad closure approximates this parallel heat flux with good accuracy.
Keywords: Boltzmann equation; Fluid dynamics; Couette flow; Knudsen layers (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117304594
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:484:y:2017:i:c:p:532-557
DOI: 10.1016/j.physa.2017.04.149
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().