Collective dynamics in heterogeneous networks of neuronal cellular automata
Kaustubh Manchanda,
Amitabha Bose and
Ramakrishna Ramaswamy
Physica A: Statistical Mechanics and its Applications, 2017, vol. 487, issue C, 111-124
Abstract:
We examine the collective dynamics of heterogeneous random networks of model neuronal cellular automata. Each automaton has b active states, a single silent state and r−b−1 refractory states, and can show ‘spiking’ or ‘bursting’ behavior, depending on the values of b. We show that phase transitions that occur in the dynamical activity can be related to phase transitions in the structure of Erdõs–Rényi graphs as a function of edge probability. Different forms of heterogeneity allow distinct structural phase transitions to become relevant. We also show that the dynamics on the network can be described by a semi-annealed process and, as a result, can be related to the Boolean Lyapunov exponent.
Keywords: Discrete dynamics; Periodic activity; Binary mixtures; Network motif; Boolean Lyapunov exponent; Semi-annealed approximation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117306623
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:487:y:2017:i:c:p:111-124
DOI: 10.1016/j.physa.2017.06.021
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().