The light pollution as a surrogate for urban population of the US cities
Felipe G. Operti,
Erneson A. Oliveira,
Humberto A. Carmona,
Javam C. Machado and
José S. Andrade
Physica A: Statistical Mechanics and its Applications, 2018, vol. 492, issue C, 1088-1096
Abstract:
We show that the definition of the city boundaries can have a dramatic influence on the scaling behavior of the night-time light (NTL) as a function of population (POP) in the US. Precisely, our results show that the arbitrary geopolitical definition based on the Metropolitan/Consolidated Metropolitan Statistical Areas (MSA/CMSA) leads to a sublinear power-law growth of NTL with POP. On the other hand, when cities are defined according to a more natural agglomeration criteria, namely, the City Clustering Algorithm (CCA), an isometric relation emerges between NTL and population. This discrepancy is compatible with results from previous works showing that the scaling behaviors of various urban indicators with population can be substantially different for distinct definitions of city boundaries. Moreover, considering the CCA definition as more adequate than the MSA/CMSA one because the former does not violate the expected extensivity between land population and area of their generated clusters, we conclude that, without loss of generality, the CCA measures of light pollution and population could be interchangeably utilized in future studies.
Keywords: Allometry; Night-time light; Light pollution; City clustering algorithm; Metropolitan/Consolidated Metropolitan Statistical Area (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117311159
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:492:y:2018:i:c:p:1088-1096
DOI: 10.1016/j.physa.2017.11.039
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().