Compressed sensing based missing nodes prediction in temporal communication network
Guangquan Cheng,
Yang Ma,
Zhong Liu and
Fuli Xie
Physica A: Statistical Mechanics and its Applications, 2018, vol. 492, issue C, 265-271
Abstract:
The reconstruction of complex network topology is of great theoretical and practical significance. Most research so far focuses on the prediction of missing links. There are many mature algorithms for link prediction which have achieved good results, but research on the prediction of missing nodes has just begun. In this paper, we propose an algorithm for missing node prediction in complex networks. We detect the position of missing nodes based on their neighbor nodes under the theory of compressed sensing, and extend the algorithm to the case of multiple missing nodes using spectral clustering. Experiments on real public network datasets and simulated datasets show that our algorithm can detect the locations of hidden nodes effectively with high precision.
Keywords: Missing node; Network reconstruction; Compressed sensing; Spectral clustering (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117308610
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:492:y:2018:i:c:p:265-271
DOI: 10.1016/j.physa.2017.08.149
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().