Simulation of magnetoelastic response of iron nanowire loop
Junping Huang,
Xianghe Peng,
Zhongchang Wang and
Xianzhi Hu
Physica A: Statistical Mechanics and its Applications, 2018, vol. 493, issue C, 384-399
Abstract:
We analyzed the magnetoelastic responses of one-dimensional iron nanowire loop systems with quantum statistical mechanics, treating the particles in the systems as identical bosons with an arbitrary integer spin. Under the assumptions adopted, we demonstrated that the Hamiltonian of the system can be separated into two parts, corresponding to two Ising subsystems, describing the particle spin and the particle displacement, respectively. Because the energy of the particle motion at atomic scale is quantized, there should be more the strict constraint on the particle displacement Ising subsystem. Making use of the existing results for Ising system, the partition function of the system was derived into two parts, corresponding respectively to the two Ising subsystems. Then the Gibbs distribution was obtained by statistical mechanics, and the description for the magnetoelastic response was derived. The magnetoelastic responses were predicted with the developed approach, and the comparison with the results calculated with VASP demonstrates the validity of the developed approach.
Keywords: Ising model; Ab-initio molecular dynamics; Partition function; Helmholtz free energy; Magnetoelastic response (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117310634
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:493:y:2018:i:c:p:384-399
DOI: 10.1016/j.physa.2017.10.053
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().