EconPapers    
Economics at your fingertips  
 

Complexity analysis based on generalized deviation for financial markets

Chao Li and Pengjian Shang

Physica A: Statistical Mechanics and its Applications, 2018, vol. 494, issue C, 118-128

Abstract: In this paper, a new modified method is proposed as a measure to investigate the correlation between past price and future volatility for financial time series, known as the complexity analysis based on generalized deviation. In comparison with the former retarded volatility model, the new approach is both simple and computationally efficient. The method based on the generalized deviation function presents us an exhaustive way showing the quantization of the financial market rules. Robustness of this method is verified by numerical experiments with both artificial and financial time series. Results show that the generalized deviation complexity analysis method not only identifies the volatility of financial time series, but provides a comprehensive way distinguishing the different characteristics between stock indices and individual stocks. Exponential functions can be used to successfully fit the volatility curves and quantify the changes of complexity for stock market data. Then we study the influence for negative domain of deviation coefficient and differences during the volatile periods and calm periods. after the data analysis of the experimental model, we found that the generalized deviation model has definite advantages in exploring the relationship between the historical returns and future volatility.

Keywords: Complexity analysis; Generalized deviation; Volatility; Past price; Financial time series (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117312864
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:494:y:2018:i:c:p:118-128

DOI: 10.1016/j.physa.2017.12.035

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:494:y:2018:i:c:p:118-128