Dynamical and topological aspects of consensus formation in complex networks
A. Chacoma,
G. Mato and
M.N. Kuperman
Physica A: Statistical Mechanics and its Applications, 2018, vol. 495, issue C, 152-161
Abstract:
The present work analyzes a particular scenario of consensus formation, where the individuals navigate across an underlying network defining the topology of the walks. The consensus, associated to a given opinion coded as a simple message, is generated by interactions during the agent’s walk and manifest itself in the collapse of the various opinions into a single one. We analyze how the topology of the underlying networks and the rules of interaction between the agents promote or inhibit the emergence of this consensus. We find that non-linear interaction rules are required to form consensus and that consensus is more easily achieved in networks whose degree distribution is narrower.
Keywords: Consensus; Complex networks; Topological effects (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117313201
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:495:y:2018:i:c:p:152-161
DOI: 10.1016/j.physa.2017.12.071
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().