EconPapers    
Economics at your fingertips  
 

Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

Tarik Hadzibeganovic, Dietrich Stauffer and Xiao-Pu Han

Physica A: Statistical Mechanics and its Applications, 2018, vol. 496, issue C, 676-690

Abstract: Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.

Keywords: Agent-based model; Evolutionary game theory; Complex networks; Tag-based cooperation; Monte-Carlo simulation; Ethnocentrism (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117313626
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:496:y:2018:i:c:p:676-690

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-08-28
Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:676-690