EconPapers    
Economics at your fingertips  
 

Measuring transferring similarity via local information

Likang Yin and Yong Deng

Physica A: Statistical Mechanics and its Applications, 2018, vol. 498, issue C, 102-115

Abstract: Recommender systems have developed along with the web science, and how to measure the similarity between users is crucial for processing collaborative filtering recommendation. Many efficient models have been proposed (i.g., the Pearson coefficient) to measure the direct correlation. However, the direct correlation measures are greatly affected by the sparsity of dataset. In other words, the direct correlation measures would present an inauthentic similarity if two users have a very few commonly selected objects. Transferring similarity overcomes this drawback by considering their common neighbors (i.e., the intermediates). Yet, the transferring similarity also has its drawback since it can only provide the interval of similarity. To break the limitations, we propose the Belief Transferring Similarity (BTS) model. The contributions of BTS model are: (1) BTS model addresses the issue of the sparsity of dataset by considering the high-order similarity. (2) BTS model transforms uncertain interval to a certain state based on fuzzy systems theory. (3) BTS model is able to combine the transferring similarity of different intermediates using information fusion method. Finally, we compare BTS models with nine different link prediction methods in nine different networks, and we also illustrate the convergence property and efficiency of the BTS model.

Keywords: Transferring similarity; Link prediction; Dempster–Shafer evidence theory; Belief function; Recommender systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437117313936
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:498:y:2018:i:c:p:102-115

DOI: 10.1016/j.physa.2017.12.144

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:498:y:2018:i:c:p:102-115