Dynamic fractals in spatial evolutionary games
Sergei Kolotev,
Aleksandr Malyutin,
Evgeni Burovski,
Sergei Krashakov and
Lev Shchur
Physica A: Statistical Mechanics and its Applications, 2018, vol. 499, issue C, 142-147
Abstract:
We investigate critical properties of a spatial evolutionary game based on the Prisoner’s Dilemma. Simulations demonstrate a jump in the component densities accompanied by drastic changes in average sizes of the component clusters. We argue that the cluster boundary is a random fractal. Our simulations are consistent with the fractal dimension of the boundary being equal to 2, and the cluster boundaries are hence asymptotically space filling as the system size increases.
Keywords: Cluster interface; Spatial games; Dynamic fractals; Prisoner’s Dilemma (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118300773
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:499:y:2018:i:c:p:142-147
DOI: 10.1016/j.physa.2018.02.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().