EconPapers    
Economics at your fingertips  
 

Effective network inference through multivariate information transfer estimation

Carl-Henrik Dahlqvist and Jean-Yves Gnabo

Physica A: Statistical Mechanics and its Applications, 2018, vol. 499, issue C, 376-394

Abstract: Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called “global silencing” approach of Barzel and Barabasi or “network deconvolution” of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank’s centrality measurements relate to bank’s systemic vulnerability.

Keywords: Effective network; Indirect link; Systemic risk; Bank network (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118301377
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:499:y:2018:i:c:p:376-394

DOI: 10.1016/j.physa.2018.02.053

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:376-394