Dengue fever spreading based on probabilistic cellular automata with two lattices
F.M.M. Pereira and
P.H.T. Schimit
Physica A: Statistical Mechanics and its Applications, 2018, vol. 499, issue C, 75-87
Abstract:
Modeling and simulation of mosquito-borne diseases have gained attention due to a growing incidence in tropical countries in the past few years. Here, we study the dengue spreading in a population modeled by cellular automata, where there are two lattices to model the human–mosquitointeraction: one lattice for human individuals, and one lattice for mosquitoes in order to enable different dynamics in populations. The disease considered is the dengue fever with one, two or three different serotypes coexisting in population. Although many regions exhibit the incidence of only one serotype, here we set a complete framework to also study the occurrence of two and three serotypes at the same time in a population. Furthermore, the flexibility of the model allows its use to other mosquito-borne diseases, like chikungunya, yellow fever and malaria. An approximation of the cellular automata is proposed in terms of ordinary differential equations; the spreading of mosquitoes is studied and the influence of some model parameters are analyzed with numerical simulations. Finally, a method to combat dengue spreading is simulated based on a reduction of mosquito birth and mosquito bites in population.
Keywords: Basic reproduction number; Dengue fever; Epidemiology; Probabilistic cellular automata; SIR model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118300499
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:499:y:2018:i:c:p:75-87
DOI: 10.1016/j.physa.2018.01.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().